Collaborating institutions: RIKEN Center for Brain Science (Japan), School of Informatics at The University of Edinburgh About the projectProject title: "Development of Data-driven Prediction Model using 3D Multimodal Deep Neural Networks for Estimating the Evolution of White Matter Hyperintensities Associated with Small Vessel Disease in Brain MRI".Prognosis of vascular disease is a need, and this collaboration is primarily focused on developing data-driven solutions to build predictive models for the progression of small vessel disease (SVD), a vascular disease that underpins ageing and dementia progression, using MRI scans as the main diagnostic tool. Specifically, the aim of this project is to develop algorithms for predicting the evolution of white matter hyperintensities, which are the key feature of this progressive disease.Collaborating scientistsRIKEN Center for Brain Science (Japan)The University of Edinburgh (UK) Dr Muhammad Febrian RachmadiSpecial Postdoctoral ResearcherEmail Address: febrian.rachmadi@riken.jp Dr Maria Valdes-HernandezRow Fogo Lecturer in Medical Image AnalysisAffiliated departments:Row Fogo Centre for Research into Ageing and the BrainEdinburgh ImagingCentre for Clinical Brain SciencesEmail address: M.Valdes-Hernan@ed.ac.uk Professor Taku KomuraProfessor of Computer GraphicsAffiliated departments:Institute of Perception, Action and BehaviourSchool of InformaticsEmail address: TKomura@inf.ed.ac.uk Awarded grantsThis project is funded by the Grants-in-Aid for Scientific Research (KAKENHI) Program (project no 20K23356) - awarded 2,861,000 ¥ Jan 2021- Dec 2022. PublicationsPublication title: "Probabilistic Deep Learning with Adversarial Training and Volume Interval Estimation - Better Ways to Perform and Evaluate Predictive Models for White Matter Hyperintensities"Authors: Muhammad Febrian Rachmadi, Maria del C. Valdes-Hernandez, Rizal Maulana, Joanna Wardlaw, Stephen Makin, and Henrik SkibbePublication date: September 2021Publication link on Springer (external website) Recognitions and awardsAbove publication received the Best Publication Award at 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021).Read more about the eventMICCAI website (external link) Developed algorithmsIMPORTANT NOTE: Developed by us algorithms are publically available, free of charge. You are free to use developed by us tools for research purposes. Hovewer, please include adequate citations and acknowledgments whenever you present or publish results that are based on it.Algorithm title: "Probabilistic Deep Learning with Adversarial Training and Volume Interval Estimation - Better Ways to Perform and Evaluate Predictive Models for White Matter Hyperintensities Evolution"Authors: Muhammad Febrian RachmadiTopics: deep neural networks, deep learning, brain MRI, WMH segmentation, WMHsAlgorithm linkGitHub link (external website) Image Key contactPlease, get in touch with Dr Maria Valdes-Hernandez for more information about this project and further collaboration. M.Valdes-Hernan@ed.ac.ukDr Maria Valdes-Hernandez research profile This article was published on 2024-08-27